
Agile Estimation
Techniques and
Innovative Approaches
to Software Process
Improvement

Ricardo Colomo-Palacios
Universidad Carlos III de Madrid, Spain

Jose Antonio Calvo-Manzano Villalón
Universidad Politécnica de Madrid, Spain

Antonio de Amescua Seco
Universidad Carlos III de Madrid, Spain

Tomás San Feliu Gilabert
Universidad Politécnica de Madrid, Spain

A volume in the Advances in Systems
Analysis, Software Engineering, and High
Performance Computing (ASASEHPC)
Book Series

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2014 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

For electronic access to this publication, please contact: eresources@igi-global.com.

Agile estimation techniques and innovative approaches to software process improvement / Ricardo Colomo-Palacios, Jose
Antonio Calvo-Manzano Villalon, Antonio de Amescua Seco and Tomas San Feliu Gilabert, editors.
 pages cm
 Includes bibliographical references and index. ISBN 978-1-4666-5182-1 (hardcover) -- ISBN 978-1-4666-5183-8
(ebook) -- ISBN 978-1-4666-5185-2 (print & perpetual access) 1. Agile software development. 2. Computer software--
Development. I. Colomo-Palacios, Ricardo, 1973- editor of compilation.
 QA76.76.D47A3823 2014

 005.1--dc23
 2013044979

This book is published in the IGI Global book series Advances in Systems Analysis, Software Engineering, and High Perfor-
mance Computing (ASASEHPC) (ISSN: 2327-3453; eISSN: 2327-3461)

Managing Director:
Production Editor
Development Editor:
Acquisitions Editor:
Typesetter:
Cover Design:

Lindsay Johnston
Jennifer Yoder
Allyson Gard
Kayla Wolfe
John Crodian
Jason Mull

198

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 12

On Software Architecture
Processes and their

Use in Practice

ABSTRACT

Software architecture is a very important software artifact, as it describes a system’s high-level structure
and provides the basis for its development. Software architecture development is not a trivial task; to
this end, a number of methods have been proposed to try to systematize their related processes to ensure
predictability, repeatability, and high quality. In this chapter, the authors review some of these methods,
discuss some specific problems that they believe complicate their adoption, and present one practical
experience where the problems are addressed successfully.

1. INTRODUCTION

In recent years, software architecture has begun to
permeate mainstream software development and,
according to Shaw and Clements (Shaw & Cle-
ments, 2006), since the year 2000, architecture has
entered a “popularization” period characterized
by aspects such as increased attention to the role
of the software architect and the introduction of
software architecture processes into organizations.
As part of this trend, a number of methods have

appeared to try to systematize these processes
to ensure predictability, repeatability, and high
quality outcomes.

The software architecture of a software system
is the structure (or structures) of this system,
which comprises software elements, the exter-
nally visible properties of those elements, and
the relationships among them (Clements et al.,
2010). In this chapter, by software architecture
development we refer to the activities that are typi-
cally performed early in a software development
project, which contribute to creating the different
structures that shape the architecture. Despite the

Perla Velasco-Elizondo
Autonomous University of Zacatecas, Mexico

Humberto Cervantes
Autonomous Metropolitan University, Mexico

DOI: 10.4018/978-1-4666-5182-1.ch012

199

On Software Architecture Processes and their Use in Practice

availability of methods to support the processes
related to software architecture development, we
consider that there is a set of specific problems
that complicate the adoption of such methods in
practice. A summary of these problems can be
stated as follows:

1. Selection of methods for the software
architecture lifecycle: Ideally, software
architecture development should be carried
out within the context of a software archi-
tecture lifecycle, which imposes a structure
on the activities for developing it. Existing
software architecture development methods
typically focus only on a particular phase of
the lifecycle and do not cover it completely.
Thus, an appropriate combination of meth-
ods to cover the complete lifecycle must be
chosen.

2. Heterogeneity of the existing methods:
Many existing software architecture develop-
ment methods have been defined by different
authors “in isolation,” i.e. independently of
methods used in other lifecycle phases. This
results in having them defined in terms of
different activities, work products and ter-
minology. This heterogeneity requires that,
once a particular combination of methods
is chosen, they must often be analyzed and
modified to avoid mismatches, omissions or
repetitions.

3. No consideration of the software devel-
opment process: Software architecture
development methods are typically defined
independent of a particular software develop-
ment process. Therefore, the introduction of
architectural development methods into an
organization often demands adapting both
the organization development process and
the architectural development methods to fit
properly (Kazman, Nord, & Klein, 2003).

4. Architectural design methods are decou-
pled from everyday practice: To support

the design of an architecture many methods
use abstract concepts such as tactics and
patterns. These concepts are frequently not
the ones that software architects use the
most in their day-to-day activities, as many
architects tend to favor the selection of
technologies such as software frameworks
during design. Thus, it is necessary to find
ways to include commonly used concepts into
architectural design methods (Cervantes,
Velasco-Elizondo, & Kazman, 2013).

5. Difficulty of organizational deployment:
The introduction of architectural methods
into an organization often involves costs
related to process change, human resources
training and technology investment. To
promote the successful adoption of soft-
ware architecture development methods in
an organization it is necessary to follow a
systematic deployment process.

Based on the problems listed above, in this
chapter we propose some actions to address them
and describe the observed benefits when imple-
menting them in an industrial setting, specifically,
in a large software development company in
Mexico City, currently rated at CMMI-DEV level
5, which develops custom software for government
and private customers.

This chapter is organized as follows. In Section
2, we introduce the notion of software architecture
lifecycle and, within this context, review some
well-known processes and methods to support it.
Next, we discuss in more detail in section 3 the set
of problems that we consider have complicated the
adoption of these methods in practice. In Section
4, we describe a specific instance where these
problems were addressed in practice. Section 5
presents a discussion. Finally, in the last section,
we draw some conclusions and describe paths of
future work.

200

On Software Architecture Processes and their Use in Practice

2. REVIEW OF SOFTWARE
ARCHITECTURE PROCESSES
AND METHODS

Before starting the review of software architecture
processes and methods, it is important to intro-
duce the notion of an architecture development
lifecycle. Ideally, software architecture develop-
ment should be carried out within the context of
a software architecture lifecycle, which imposes
a structure on the activities for developing it. The
architecture development lifecycle can be seen as
a general model that comprises all the activities
and work products required to develop a software
architecture. The software architecture develop-
ment lifecycle is composed of a set of phases
depicted in Figure 1: architectural requirements
analysis, architectural design, architectural docu-
mentation, and architectural evaluation. It should
also be noted that, although these phases are not
necessarily performed sequentially, there is a se-
quential information dependency between them,
i.e. the design phase depends on the availability

of the information generated during the require-
ments analysis phase (Hofmeister et al., 2007).

Each one of the phases of the software archi-
tecture development lifecycle is supported by a
general process; to this end a number of methods
have appeared to try to systematize these pro-
cesses to ensure predictability, repeatability, and
high quality outcomes. In the following sections,
we describe the focus of each one of these pro-
cesses and review some well-known methods to
support them.

2.1 Architectural Requirement
Analysis Process and Methods

The architectural requirements analysis process
involves the activities of eliciting, analyzing,
specifying and prioritizing architectural require-
ments so that they can later be used to drive the
design of the architecture. A representative output
of this process is the architectural drivers, which
represent the main functional and non-functional
requirements, where the latter include quality at-
tributes requirements and constraints.

The Quality Attribute Workshop (QAW)
(Barbacci et al., 2003) is a method to elicit,
analyze, specify and prioritize quality attributes
requirements, e.g. performance, availability,
security or testability. In the QAW quality at-
tributes requirements are specified as scenarios,
which are textual descriptions of how the system
responds, in a measurable way, to some particular
stimulus. For example, “…when a door sensor
detects an object in the door’s path, the door mo-
tion is stopped in less than one millisecond” is an
excerpt of a performance scenario. Scenarios are
described according to a suggested 6-part template
with the active participation of the main system
stakeholders, who propose and prioritize them.
The results of the QAW include a list of quality
attributes requirements as well as a prioritized
and refined set of scenarios.

Figure 1. Phases of the software architecture
development lifecycle

201

On Software Architecture Processes and their Use in Practice

Another relevant method in this context is the
Architecture Centric Design Method (ACDM)
(Lattanze, 2009). ACDM considers a set of
eight sequential stages; most of them focus on
architectural design and evaluation. Stages 1 and
2 of ACDM discover architectural drivers and
establish project scope, focus on eliciting, ana-
lyzing and specifying architectural requirements.
As in the QAW, these stages require the active
participation of the main system stakeholders
and scenarios are utilized to specify the quality
attribute requirements of the system. Other types
of architectural drivers are also addressed in stages
1 and 2 of ACDM, i.e. functional requirements
and constraints.

Within the context of the Rational Unified
Process (RUP) (Kroll, Kruchten, & Booch, 2003)
(Jacobson, Booch, & Rumbaugh, 1999), FURPS+
(Eeles, 2012) is a model defined to support the
elaboration of a supplementary (requirements)
specification. The supplementary specification
contains the requirements that are not captured
in the use case model and is generated as part of
the Requirements discipline in the Elaboration
Phase of the RUP. FURPS+ stands for Func-
tionality, Usability, Reliability, Performance and
Supportability. The “+” in the acronym denotes
other important development concerns, such as
constraints, that must be taken into account. In
contrast to the methods described earlier, FURPS+
does not prescribe a particular way of analyzing,
specifying and prioritizing quality attributes
requirements.

2.2 Architectural Design
Process and Methods

Within the context of the architectural develop-
ment lifecycle, the process supporting the archi-
tectural design phase focuses on identifying and
selecting the different structures that compose the
architecture and that will allow the drivers identi-
fied in the architectural requirements analysis to

be satisfied. Next, we describe some methods to
support the activities of this process.

The Attribute Driven Design (ADD) (Bach-
mann et al., 2000) is a method to design a software
architecture based on the selection of patterns
and tactics. In software engineering, patterns are
understood as conceptual solutions to recurring
problems in specific design contexts. Patterns have
names associated with them that facilitate their
identification e.g. the layers pattern. Although
it is difficult to classify patterns, it is generally
accepted that architectural patterns (Buschmann,
Henney, & Schmidt, 2007) and design patterns
(Gamma et al., 1995) exist. On the other hand,
architectural tactics are understood as design
decisions that influence the control of a quality
attribute response (Bass, Clements, & Kazman,
2012), e.g. the use of a redundancy tactic pro-
motes the degree of availability and the use of
an authentication tactic promotes the degree of
security. ADD assumes the existence of a set of
quality attribute scenarios and follows a top-down
recursive decomposition-based approach where,
at each iteration, tactics and patterns are selected
and applied to satisfy a subset of the system’s
quality attribute scenarios. In the first iteration
the element to decompose is generally the entire
system. Subsequent interactions focus on the ap-
plication of tactics and patterns to the resulting
design structures from previous iterations. The
architectural design is considered complete when
all the scenarios have been satisfied.

As introduced before, ACDM is an eight-stage
method that mostly concerns architectural design
and evaluation. Once the architectural drivers have
been identified in stages 1 and 2 of ACDM, stage
3 focuses on the creation of a design for the sys-
tem architecture as well its documentation. Thus,
architectural design and architectural documenta-
tion are not separate stages in ACDM. Although
this method does not promote a particular design
approach, compared to ADD, it suggests a set
of techniques to create the architectural design.

202

On Software Architecture Processes and their Use in Practice

RUP also supports the architectural design
activity via specific workflows in the Analysis
and Design discipline of the Elaboration Phase. In
these workflows, the focus is on creating an initial
architecture for the system and completing it by
analyzing the system behavior. A similar approach
is adopted in OpenUP (OpenUP, 2012), which is
a lightweight open-source instance of RUP.

2.3 Architectural Documentation
Process and Methods

The architectural documentation process involves
creating the documents that describe the differ-
ent structures that compose the architecture for
the purpose of communicating it efficiently to
the different system stakeholders. An important
output of this process is a set of architectural
views, which represent the system’s structures,
their composing elements and the relationships
among them. Because all the details of a software
architecture are hard to represent in a single view,
documenting the architecture involves creating
a set of relevant views which can be classified
into different types: module views, which show
structures where the elements are implementation
units; component-and-connector views, which
show how the elements in the structures behave
at run time; and allocation views, which show
how the elements in the structures are allocated to
physical resources like the hardware, file systems,
and people (Clements et al., 2010) .

The 4+1 view model (Kruchten, 1995) is an
architectural documentation method adopted by
RUP. This method considers the generation of five
interrelated views: the Logical View, the Process
View, the Physical and the Development View.
The fifth view corresponds to the Use Case view
around which the other views revolve. The views
are meant to be documented iteratively based
on existing information in previously developed
artifacts such as use cases and the supplementary

specifications. In the 4+1 view model, the syntax
suggested for documenting the architecture is
UML.

Views and Beyond (V&B) (Clements et al.,
2010) is another method to document architec-
tural views. The V&B approach defines two
main stages for architectural documentation: (1)
selecting the views that are worth documenting
and (2) documenting them using a specific tem-
plate. The template includes elements such as a
primary representation, an architectural elements
catalog, a context diagram, a variability guide and
an architecture background. Multiple related views
can be grouped in a view package that includes
the views and information to relate these views
to each other.

Another method to support the architectural
documentation process is Viewpoints and Perspec-
tives (Rozanski & Woods, 2005). A viewpoint
defines a view in which content and conventions
for constructing it are standardized. A perspective
is a collection of guidelines to achieve a particular
quality property relevant to a number of architec-
tural views. The method provides a framework for
choosing the relevant views based on the structures
that are inherent in the software architecture. Six
viewpoints (i.e. functional, information, concur-
rency, development, deployment and operational)
and seven perspectives (e.g. security, performance,
availability, usability, accessibility, location and
regulation) are defined. Both viewpoints and
perspectives are described in detail in a set of
documents, which include information such as
definition, concerns addressed, applicability, re-
lated stakeholders, activities, common problems
and pitfalls, and a set of checklists to guide the
architecture definition.

In previous sections we introduced the ACDM
method and mentioned that architectural documen-
tation is part of stage 2 that focuses on architectural
design. Thus, the output of stage 2 comprises the
initial, or the refined, architectural design and

203

On Software Architecture Processes and their Use in Practice

the associated documentation artifacts. ACDM
considers static, dynamic and physical views,
which are analogous to the module, component-
and-connector and allocation views mentioned
before, and suggests organizing them according
to a specific template. The ACDM does not em-
phasize the use of a specific notation.

2.4 Architectural Evaluation
Process and Methods

Software architecture evaluation focuses on assess-
ing a software architecture design to determine
whether it satisfies the required architectural
requirements. Next, we describe some relevant
methods that support this process.

The Software Architecture Analysis Method
(SAAM) (Kazman et al., 1996) is a scenario-based
evaluation method. Although SAAM works for
scenarios related to different quality attributes
requirements, it is considered that the main one
SAAM analyzes is modifiability. SAAM can be
used either for a single architecture or for com-
parison of multiple ones. For a single architecture,
SAAM’s activities are scenario development,
which requires the presence of all stakeholders,
SA description, individual scenario evaluation
and scenario interaction. In this case, the cost of
scenario modification is estimated by listing the
components and the connectors that are affected
and then counting the number of changes. In the
case of using SAAM to compare multiple archi-
tectures, scenarios and the scenario interactions
are weighted according to their importance. This
metric is used to determine an overall evaluation
of the candidate architectures.

The Architecture Tradeoff Analysis Method
(ATAM) (Clements, Kazman, & Klein, 2002) is
an evaluation method based on SAAM. However,
and in contrast to the former, ATAM explores
quality attribute scenarios of any type to discover
sensitivity points, trade-off points and risks within
a set of candidate architectural structures. In

ATAM a sensitivity point is a property resulting
from a design decision which directly impacts the
achievement of a particular quality attribute. A
trade-off point is a property that affects multiple
quality attributes. A risk is a design decision
that was incorrectly taken or not taken at all.
Finally, it is important to mention that ATAM
is designed to support the evaluation of systems
whose quality attribute requirements may not
have been documented when the evaluation took
place. Thus, ATAM considers, as part of its initial
steps, the identification of the quality attributes
requirements.

In ACDM, the eight-stage method introduced
in the previous sections, stages 4-6 focus on
evaluation. In stage 4, the architectural design is
reviewed to discover issues that may compromise
the satisfaction of the architectural drivers. In order
to do so, the architecture design team evaluate
the initial architectural design (or reevaluate the
refined design after architectural evaluation and
experimentation, see stages 5-6 below). Based on
this review, it is determined in stage 5 whether
the architectural design is ready for produc-
tion or not. If it is not, some experimentation is
carried out in stage 6 to address the issues that
were discovered during the review. Based on the
results of the experiments, the team refine the
architecture design (ACDM stage 3 described in
the architectural design section). This sequence
of activities is repeated until all the issues have
been addressed.

In RUP, within the architecture refinement
activity there is a task named Review the Archi-
tecture whose focus is to perform an architectural
evaluation. The review is conducted as a meeting
and there are recommendations with respect to
the approaches that can be used to do the review.
These include reviewing the architectural model
(representation-driven review), reviewing data
and measurements (information-driven review)
and reviewing scenarios (scenario-driven review).
RUP does not provide more specific guidelines on

204

On Software Architecture Processes and their Use in Practice

how to conduct these particular reviews, and the
Review the Architecture task script only empha-
sizes the fact that issues must be identified during
the review and assigned to the person responsible
for their resolution.

Some other methods that support software
architecture are Architecture-Level Modifiabil-
ity Analysis (ALMA) (Bengtsson et al., 2000)
(Lassing et al., 2002), Performance Assessment
of Software Architecture (PASA) (Ali Babar &
Gorton, 2004) and Active Reviews for Intermedi-
ate Designs (ARID) (Clements, 2000).

3. PROBLEMS WITH ADOPTING
SOFTWARE ARCHITECTURE
PROCESSES AND METHODS

Unfortunately, despite a growing body of methods
to support software architecture processes during
the past years, at present we consider that not
many organizations have adopted these methods in
practice, at least, not as they are currently defined.
The following list includes what we consider the
main problems that have contributed to this:

1. Selection of methods for the software archi-
tecture lifecycle.

2. Heterogeneity of the existing methods.
3. No consideration for the software develop-

ment process.
4. Architectural design methods are decoupled

from everyday practice.
5. Difficulty of organizational deployment.

It is important to highlight that we have heard
about these problems from practitioners in the field
as well as from our own experience with clients
and industry contacts. In the following sections,
we describe these problems in more detail.

3.1 Problem #1: Selection
of Methods for the Software
Architecture Lifecycle

Table 1 shows (in grey) the phases of the software
architecture lifecycle covered by the methods re-
viewed in this chapter. As this table shows, only
ACDM and RUP cover the complete lifecycle.
RUP, however, is a general software development
process and the guidance that it provides with

Table 1. Phases of the software architecture development lifecycle covered by the methods reviewed

205

On Software Architecture Processes and their Use in Practice

respect to each of the phases in the architecture
lifecycle is limited. The rest of the methods only
cover specific phases of the architecture lifecycle.

The fact that architecture methods generally
focus on particular phases of the lifecycle requires
selecting an appropriate combination of methods.
Table 1 also shows that there is more than one
method to choose from for a particular phase of
the lifecycle. As can be implied, not only can the
number of available methods complicate the se-
lection, but also the lack of knowledge of software
architecture and experience in using these meth-
ods.

3.2 Problem #2: Heterogeneity
of the Existing Methods

In the previous section we discussed the problem
of selecting an adequate combination of methods
to cover the architecture lifecycle. However, choos-
ing the methods is not all that is needed. In order
to progress beyond the selection of individual
methods, it is necessary to stand back and iden-
tify how the selected methods should properly be
used together. This is not a trivial task because
these methods have usually been defined by dif-
ferent authors “in isolation,” and therefore they
are defined in terms of different activities, work
products and terminology.

We have noticed that even methods that share a
common heritage do not provide explicit support
to combine them. To give an example, consider
ATAM, the method to support the architecture
evaluation process; and QAW, the method to
support the architectural requirements analysis
process, both developed by the Software Engineer-
ing Institute (SEI) (Software Engineering Institute,
2012). At the beginning, ATAM requires quality
attributes for the system to be identified. This is
because ATAM can be performed on a system

whose quality attributes are not documented.
However, if a requirements method such as QAW
has been used previously, the initial steps of ATAM
may be unnecessary.

Thus, once a particular combination of methods
is chosen, the architect must often analyze and
modify them to avoid mismatches, omissions or
repetitions.

3.3 Problem #3: No Consideration of
the Software Development Process

Another important problem is that architectural
development methods are typically defined inde-
pendently of a particular software development
process. As far as we know, only the author of
ACDM provides a detailed description of how to
integrate it with different software development
processes such as Extreme Programming, Scrum,
Team Software Process (TSP), Rational Unified
Process (RUP) and Agile Unified Process (AUP)
(Lattanze, 2009). For the rest of the methods very
little or no guidance is given to help architects to
use them within the context of specific software
development processes. Thus, the introduction
of architectural development methods into an
organization often requires adapting both the
organization’s development process and the ar-
chitectural development methods to fit properly
(Kazman, Nord, & Klein, 2003).

It is important to highlight that, when provided,
the guidance is typically generic and therefore
difficult to apply to specific situations. Success
often depends on the context and characteristics of
the organization interested in using the methods.
The adaptation of the architectural development
methods and the development are part of the ac-
tivities of organizational deployment discussed
in section 3.6.

206

On Software Architecture Processes and their Use in Practice

3.4 Problem #4: Architectural
Design Methods Are Decoupled
from Everyday Practice

Architectural design is performed by applying
design decisions to satisfy a set of architectural
requirements. Examples of design decisions,
within the context of the categories discussed in
(Bass, Clements, & Kazman, 2012), are shown in
Table 2. All the design decisions listed in this table
are very important for the success of the system
and for its evolution. However, the final category
of design decisions and choice of technology are
very critical to the success of the system.

Unfortunately, most software architecture
design methods say very little on the choice of
technology (Hofmeister et al., 2007) and often
deal in abstract concepts such as tactics and pat-
terns. These concepts are different from the ones
that software architects use in their day-to-day
work, which mostly come from development

frameworks such as JSF (Java Server Faces),
Spring, Hibernate or Axis (Cervantes, Velasco-
Elizondo, & Kazman, 2013). Frameworks are
related to patterns and tactics because they in-
stantiate these concepts. However, as the mapping
among all these concepts is not very evident in
architectural design methods, software architects
are often unwilling to use them.

3.5 Problem #5: Difficulty of
Organizational Deployment

The introduction of architectural methods into an
organization, whose processes are documented
and used, often has a high initial cost due to the
need to change several existing process elements.
This cost is not only limited to the cost of making
changes in the processes elements, it also often
comprises the cost of training and technology
investment.

Table 2. Examples of design decisions within the context of the categories discussed in (Bass, Clements,
& Kazman, 2012)

Category Examples

Allocation of
responsibilities

• Determination of basic system functions.
• Definition of the architectural infrastructure.
• Determination of how responsibilities are allocated to architectural elements.

Coordination model • Determination of the elements of the system that must be coordinated.
• Definition of coordination properties, e.g. timeliness, currency, completeness, correctness, and consistency.
• Selection of communication mechanisms to support coordination properties.

Data model • Determination of main data abstractions.
• Definition of operations and properties of data abstractions.
• Definition of any metadata needed for consistent interpretation of data abstractions.

Management
of resources

• Determination of the resources that must be managed.
• Determination of the system elements that manage each resource.
• Selection of the strategies employed when there is contention for or saturation of resources.

Mapping among
architectural elements

• Specification of the mapping of runtime elements that are created from each module.
• Specification of the modules that contain the code for each runtime element.
• Specification of the assignment of runtime elements to processors and data items in the data model to data
stores

Binding time decisions • Establishment of the point in the life cycle and the mechanism for achieving a variation.

Choice of technology • Determination of the available technologies to realize the decisions made in the other categories.
• Determination of the available tools to support technology choices, e.g. IDEs, testing tools.
• Determination of the side effects of technology choices.

207

On Software Architecture Processes and their Use in Practice

Training is a fundamental aspect when intro-
ducing architecture development methods. Soft-
ware architects are generally proficient developers
with considerable experience. However, this does
not guarantee that they are knowledgeable about
software architecture concepts. Thus, training
courses and coaching activities are often required
not only for the software architect, but also for
the people that the architect deals with within
the organization. Technological support is also
an important issue as the selection of appropriate
tools is crucial to allow the architects to develop
the architecture and communicate it in an easy
and, ideally, in an automated or semi-automated
manner.

It should also be noted that when an organi-
zation decides to use a new method to perform a
specific activity, it is creating a change in the way
people work. This can generally have a negative
impact on (people’s) productivity in the early
stages. It should also be noted that an organiza-
tion might need to invest a significant amount of
effort to get people to adapt to the new processes.

4. USING ARCHITECTURE
PROCESSES IN PRACTICE

This section discusses how the five issues listed
previously were addressed in a large software
development company in Mexico City through the
introduction of software architecture development
processes and methods. This company, which is
currently rated at CMMI-DEV level 5, develops
software for government and private customers us-
ing the Team Software Process (TSP) (Humphrey,
2000). In 2010 the architecture method introduc-
tion project was conducted on some aspects of the
company as follows:

• The company had, at that time, a CMMI
level 3 rating which means, among other
things, that all of its processes associ-
ated with requirements and design were
documented.

• There was a lack of experience in cap-
turing quality attribute requirements.
Furthermore, typical customers encoun-
tered difficulties while trying to express
these types of requirements.

• The role of the software architect existed
and the organization tried to assign a soft-
ware architect to every team, although
sometimes this was not possible due to the
insufficient number of architects in the or-
ganization. People who took on the archi-
tect role were typically highly experienced
developers with high technical proficiency,
but usually little theoretical foundation in
software architecture.

• The architect, along with the team leader
and core developers, were selected at the
beginning of the project and they usually
worked together throughout the project
where they participated in several activi-
ties such as requirements, high-level de-
sign, component development and testing.

• Development contracts typically required
all of the requirements to be elicited
initially.

• The project’s cost and schedule were deter-
mined very early on before the actual re-
quirements phase was performed. During
this initial estimate, quality attributes were
not frequently considered but an initial ar-
chitecture proposal had to be established
nonetheless.

208

On Software Architecture Processes and their Use in Practice

The particular context of this company in-
troduces specific constraints that affect the way
the five problems discussed in section 3 were
addressed.

4.1 Addressing Problem #1:
Selection of Methods

As previously discussed, the first problem to be
addressed involves the selection of methods for the
software architecture lifecycle. Next, we discuss
how methods for every phase of the architecture
lifecycle were selected (see summary in Table 3).

4.1.1 Requirements Phase

For the requirements phase, the methods listed in
section 2.1 were considered. While QAW is the
most complete method with respect to quality at-
tribute requirements, it was decided not to adopt it
initially because of the lack of maturity in the com-
pany on elicitation of quality attributes as well as
the difficulties associated in conducting meetings
with relevant stakeholders. The decision, instead,
was to define a custom method for requirements
engineering of quality attributes, which would
complement the existing requirements process of
the company and which would help provide some
initial level of maturity with respect to quality
attribute elicitation. The scenario technique was

retained along with an impact analysis technique
associated with FURPS+. Prioritization was
performed with the customer using a technique
taken from ATAM where every scenario is given
two ratings, which can take a Low, Medium or
High value. The two ratings correspond to the
importance of a quality attribute scenario for the
customer and the difficulty of implementation
from the architect’s perspective.

4.1.2 Design Phase

For the design phase, only ADD was considered
because this method provides the most detailed
process for designing in a systematic way. Select-
ing ADD posed no significant problems since the
company did not have any architectural design
process in place.

4.1.3 Documentation Phase

For the documentation phase, the fact that the
company already had several artifacts in place
for documenting the software architecture had to
be considered. These artifacts included a design
document based on the 4+1 Views method. It was
not necessary to make a complete change to the
document so it was decided that only the concept
of view packages and the associated templates
from the V&B would be adopted.

Table 3. Summary of information on method selection

Architectural
Lifecycle Phase

Constraints Selected Method

Requirement analysis - Lack of experience in quality attributes
- Existing requirement process
- Difficulty in involving customers

Custom quality attribute elicitation
method

Design - Existing architectural sketch from early estimation ADD

Documentation - Existing standard based on the 4+1 Views method V&B (only view packages and
templates)

Evaluation - Availability of other architects for the evaluation team
- Architects’ limited time

ACDM stage 4 (“Evaluate the
architectural design”)

209

On Software Architecture Processes and their Use in Practice

4.1.4 Evaluation Phase

For the evaluation phase, there was no equivalent
activity in the existing organizational process. One
benefit associated with the size of the company is
that there was a reasonable number of architects
that could participate as members of an architecture
evaluation team so that performing scenario-based
evaluations could be achieved. The constraint,
however, was that their availability was limited,
so the evaluation meeting had to be performed in
a short time. Among the scenario-based evalua-
tion methods, both ATAM and ACDM Stage 4
(Evaluate the Architectural Design) were consid-
ered. ATAM was discarded because it typically
requires two days to carry out an evaluation and,
furthermore, some steps of ATAM are rendered
unnecessary because quality attributes are cap-
tured using the requirements method. The final
decision was to select the process defined by
ACDM’s Stage 4.

4.2 Addressing Problem #2: Adapting
and Connecting the Methods

The second problem involved adapting the meth-
ods to overcome heterogeneity, resulting from the
fact that methods are defined in isolation. Next,
we discuss how methods for every phase of the
architecture lifecycle were adapted to overcome
this heterogeneity.

4.2.1 Requirements Phase

Since the process for the requirements phase was
a custom method, it required no particular adapta-
tion of an existing method. However, one aspect
that was considered, in addition to elicitation of
quality attributes requirements, was the identi-
fication of other architectural drivers, including
functional requirements and constraints. These
architectural drivers were identified by adding
a primary use case selection activity and listing
constraints (which had not been formally identified

previously). Complementing the quality attribute
elicitation custom method with the selection of
primary use cases and constraint identification
provided all the necessary inputs for the design
phase.

4.2.2 Design Phase

The ADD method was adopted with minor modifi-
cations. One important aspect that was considered
was that the initial design iteration does not start
“from scratch,” but rather with a preliminary ar-
chitecture sketch that is established as part of the
early estimation process. This preliminary archi-
tecture constrains the decisions that the architect
can make during the design process. Furthermore,
the design process based on ADD emphasizes the
use of technology, besides patterns and tactics,
and the creation of an executable architecture as
one of the outputs of the design process. Other
aspects that were considered were guidelines to
model the architecture in a case tool so that the
documentation packages could be produced in a
very straightforward way.

4.2.3 Documentation Phase

Regarding the documentation method, the view
template from V&B was adopted without modi-
fications. Since the company already had an ar-
chitecture document based on 4+1 Views which
mandated the inclusion of module, allocation
and component-and-connector views, the view
selection activity from V&B was not adopted. The
original views were replaced with view packages
and at least one view package associated with the
module, component-and-connector and allocation
was included.

4.2.4 Evaluation Phase

The process defined in ACDM Stage 4 was used
without modifications. This process, however,
was complemented by adding a preparation phase

210

On Software Architecture Processes and their Use in Practice

where an “evaluation package” was assembled.
This package includes information concerning
the business goals, the architectural drivers and
the views produced in the documentation phase.
Furthermore, once the evaluation method is per-
formed, a follow-up activity is performed to sup-
port the architect in dealing with the observations
raised during the evaluation meeting.

4.3 Addressing Problem #3:
Integrating the Methods with
the Team Software Process

The Team Software Process, as its name suggests,
is a development process oriented towards teams,
which is built on top of the Personal Software
Process (PSP) (Humphrey, 2005). Data collected
from the TSP projects reveal that projects devel-
oped using TSP do indeed achieve substantially
better results than typical projects (0.06 defects/
KLOC versus 7.5 defects/KLOC after delivery)
(Davis & Mullaney, 2003).

A TSP software project is performed as a
series of development cycles, where each cycle
begins with a planning process called a launch
and ends with a closing process called a post-
mortem. Within each development cycle, activities
belonging to different phases can be performed.
These phases include: requirements (REQ), high-
level design (HLD), implementation (IMPL) and
testing (TEST). The REQ phase of TSP focuses
on producing a complete System Requirements
Specification document (SRS). The main goal of
the HLD phase is to produce a high-level design
that will guide product implementation. This
high-level design must define the components that
compose the system and that have to be designed
and developed independently using PSP in the
IMPL phase. Finally, the TEST phase focuses
on performing integration and system testing and
on preparing the delivery of the system. It must
be noted that the lifecycle model of a particular

project (waterfall, incremental) is defined by the
phases that are performed in each cycle.

TSP does not give full consideration to soft-
ware architecture development. None of the roles
defined in TSP are that of software architect,
which (generally speaking) denotes the person
responsible for performing the process of software
architecture development discussed previously.
Furthermore, the script for the REQ phase does
not provide specific guidelines to support the
identification of architectural drivers, which are
necessary to design the architecture. The HLD
script focuses on designing a general structure to
guide development, but no explicit consideration
is given to satisfying quality attributes in this
process. A further problem involves the fact that
TSP does not mandate an architectural evaluation
to be performed. The closest activities include
a design walkthrough and the inspection of the
design document. These activities, however, are
performed by other team members, who may have
less experience than the architect with respect to
designing and, as a consequence, may not detect
complex design problems.

The UML activity diagram in Figure 2 shows
a general overview of the introduction strategy
of software architecture development into the
TSP (Cervantes, Martinez, Castillo, Montes de
Oca, 2010). Vertical swimlanes represent the
roles that participate in architecture development
activities and horizontal swimlanes represent TSP
phases (REQ and HLD). Within the HLD phase,
two regions represent distinct stages. Composite
activities, such as Perform Architectural Design,
represent architectural development methods
and objects represent artifacts produced by these
methods.

As the diagram shows, the requirements
method is included as part of the REQ phase of
TSP and its execution produces a list of scenarios.
The remaining methods are all part of the HLD
phase and they are performed as the initial ac-
tivities of this phase. The HLD phase is thus di-

211

On Software Architecture Processes and their Use in Practice

vided into two stages: architectural design stage
and high-level design and documentation stage.
During the architectural design stage, the activi-
ties previously discussed that culminate in an
evaluated architectural design are performed. This
initial stage is performed mainly by the architect,
but other architects from outside the project also
participate during the evaluation of the architec-
ture. In the high-level design and documentation
stage, the team design and document the rest of

the system based on the architectural design. This
design typically involves creating sequence dia-
grams for all of the use cases, which allow the
interfaces of all of the components to be specified.
This specification is later used in the development
phase (IMPL) for performing detailed design and
development of the components.

The benefits of this approach is that the high-
level design and documentation stage is performed
using an architecture that has been evaluated.

Figure 2. Overview of architecture lifecycle phases introduced into TSP

212

On Software Architecture Processes and their Use in Practice

Furthermore, the evaluation team participate
in the architectural evaluation while other team
members with less experience participate in the
inspection of the architecture document at the end
of the HLD phase.

4.4 Addressing Problem #4:
Considering Frameworks
during Architectural Design

We have discussed the problem that many soft-
ware architecture design methods often deal
with abstract concepts such as tactics and pat-
terns, while software architects mostly use those
that come from development frameworks. To
address this problem we proposed an approach
where frameworks are used as design concepts
on par with tactics and patterns. The approach
was realized as an extension to the ADD method.
However, it can be applied to other architecture
design methods as well.

Recalling section 2.2, the ADD assumes the
existence of a set of architectural drivers and fol-
lows a top-down recursive decomposition-based
approach where, at each iteration, tactics and pat-
terns are applied to satisfy a subset of drivers. Table
4, shows an excerpt of what results from the first
design iterations when frameworks are considered
as design concepts. The iterations correspond to
the greenfield development of a system to buy

bus tickets: a typical enterprise application where
large numbers of users interact with the system
through a browser or mobile apps and perform
processes such as checking bus schedules that
act on data in a database. Functional architectural
requirements include searching for bus schedules.
The most important quality attribute scenario is
performance: performing searches for timetables
in less than 10 seconds, and constraints include
time to market for the initial system release and
having a small development team with experience
in JSF, Spring and Hibernate.

In contrast to the traditional manner of per-
forming the ADD, several frameworks are se-
lected in early iterations. Although many frame-
works exist, the ones selected were favored because
of one of the architectural drivers in iteration 2.
Once frameworks are chosen, further design it-
erations are impacted by this decision. To satisfy
the performance scenario, in iteration 3, at the
data layer, performance was addressed by config-
uring the parameters provided by the framework
(Hibernate Community Documentation, 2004).
In this case, Hibernate incorporates the Lazy Load
Pattern, but it also incorporates tactics such as
support for a cache (an instance of the “Maintain
Multiple Copies” tactic) that allow performance
to be improved. A detailed description of this
design approach can be found in (Cervantes,
Velasco-Elizondo, & Kazman, 2013).

Table 4. Excerpt of the initial ADD design iterations when using frameworks as design concepts

Iteration Architectural Drivers Element to Decompose and Designs Decisions

1 • Web access and support for mobile apps
• Time to market for the initial release
• Small development team

• Element: The whole system
• Design Decisions: Apply the 3-Layers Pattern (presentation,
business and data)

2 o Searching for bus schedules
• Team experience with frameworks

• Element: The 3-Layers
• Design Decisions: Apply the Application Service Pattern,
Use of JSF, Spring and Hibernate for the presentation,
business and data layers respectively.

3 • Performance scenario • Element: The data layer
• Design Decisions: Apply the Lazy Loading Pattern and
the Maintain Multiple Copies tactic, both by configuring
Hibernate support for lazy associations and caches.

213

On Software Architecture Processes and their Use in Practice

4.5 Addressing Problem #5:
Method Deployment

The deployment of architecture development
methods in an organization is an endeavor that
may be complicated depending on the scope of
the changes and the size of the organization. The
methods that were previously discussed were
introduced into the company by following a sys-
tematic approach based on the Organizational
Performance Management process area (OPM) of
CMMi (Chrissis, Konrad & Shrum, 2010). Figure
3 shows the general steps that were followed. Next,
we describe them.

• Diagnose: During this step, several activi-
ties were performed. These include analyz-
ing the existing processes of the organiza-
tion, observing development teams,
interviewing architects, and studying work
products. This step revealed many issues,
an example is poor documentation of qual-
ity attribute requirements.

• Proposal: During this step, the activities
discussed in sections 4.1, 4.2 and 4.3 were
performed in order to address the problems
identified during the diagnosis.

• Pilot: Piloting the proposal is necessary
in order to 1) understand whether the pro-
posal can really be applied in the context of
a real project and 2) make adjustments to
the proposal based on the results of its use.
During the pilots, adjustments to the meth-
ods were made. An example of this is the
modification of ADD to consider frame-
works as design concepts, as discussed in
section 4.4.

• Deploy: This is one of the most complex
steps as it requires many activities to be
performed. These activities include creat-
ing training materials and then training the
architects, modifying the existing organi-
zational processes and also championing
the use of architecture methods.

• Follow-up: Follow-up involved coach-
ing the architects and also collecting data
about the results of the use of the methods.

Although the deployment of the methods is
treated here very briefly, the aspects associated
with organizational change management are com-
plex and need to be given serious consideration
in order to successfully introduce architectural
development methods into an organization.

5. DISCUSSION

In the following sections we provide a discussion
on (1) general observations and lessons learnt
from the implementation of the actions described
in this paper and (2) specific observations derived
from coaching architects.

Figure 3. Steps followed in the introduction of
architecture development methods

214

On Software Architecture Processes and their Use in Practice

5.1 General Observations
and Lessons Learnt

The material presented in the above sections pro-
vides an example of how the five problems listed
were addressed in the software company. While
it would be unwise to draw definitive conclu-
sions from it, it is possible to make some general
observations and discuss some valuable lessons
learnt for most of the problems addressed.

With respect to problems 1 and 2, method
selection is a complex task as it depends on the
context of the organization. As there are many
methods, both commercial and academic, each
one of them defining heterogeneous activities
and work products, it is necessary to properly
use all this information not only to select the
“best combination of methods” but also to adapt
them. Method selection and, in particular, method
adaptation also requires process engineers to work
closely with software architects in order to make
useful adaptations.

Regarding problem 3, it is important to consider
the impact of the introduction of architectural
methods into existing organizational processes.
Although in the context of the company studied
these changes seem significant, in the end the
number of affected process elements was relatively
small compared to the overall process repository.
We believe, however, that to minimize the risk of
process change, a process engineer should sys-
tematically perform analyses not only to identify
the affected process elements but also to estimate
the quantitative impact of the change on people
performance.

Regarding problem 4, reducing the de-coupling
between methods and everyday practice is often
the result of performing pilot projects with the
proposed methods. It is important to bridge this
gap between theory and practice to facilitate the
adoption of the methods.

Finally, with respect to problem 5, the aspects
associated with organizational change manage-
ment are complex and need to be given serious
consideration in order to successfully introduce
architectural development methods into an or-
ganization. If these aspects are not taken into
consideration, no matter how well architectural
methods are selected, connected and adapted to
the development process, the possibility of them
being deployed in the organization in a successful
way is limited. The introduction of architecture
development methods can be simplified by hav-
ing somebody knowledgeable about the methods
coaching the architects. In the organization studied,
one of the authors performed this task, which al-
lowed the observation of some specific aspects
that are discussed in the next section.

5.2 Specific Observations
from Coaching Architects

Regarding architectural drivers, specifying quality
attribute requirements as scenarios was a difficult
task. The identification of quality attribute types
is not straightforward and deriving them from
business goals requires certain experience. The
most difficult part, however, is the definition of
a measure to express the scenario’s response in
a quantitative manner. The SEI suggests the use
of quality attribute scenario generation tables,
which are templates that provide many choices
for creating scenarios for a particular quality at-
tribute category. To be effective these tables need,
however, to be suited to the organization’s type of
products and this requires the study of many quality
attribute scenarios produced by the organization,
something that would not be possible during the
initial introduction.

On the other hand, it was observed that the
architects often needed to have clear criteria to
establish how much architectural design is appro-

215

On Software Architecture Processes and their Use in Practice

priate. Before the proposal was presented to the
organization in question, there was great variation
among architects with respect to the criteria used
for end design. Currently, architects are asked to
make a list of architectural drivers and to perform
design activities until decisions have been taken
for all of the architectural drivers. Although this
may not always be possible depending on the time
allocated to HLD in the project, this has proven
to be a good criterion because even if an architect
does not finish his design, he is aware of the driv-
ers that he has not considered.

Some other aspects that are worthy of men-
tion are the participation of customers in software
architecture development activities and how
software architecture supports software estima-
tion and allocation of work. Regarding the first
aspect, involving customers in activities related
to software architecture development was not
feasible in the early stages of the introduction of
the methods into the organization. This is mainly
due to the lack of maturity with respect to the use
of these methods. For example, in the organization
studied the identification and correct specification
of quality attributes took some time. If QAW is
used for architectural requirements analysis, this
could build false expectations from customers.
Regarding the second aspect, the availability of
a software architecture helps not only to reduce
the risks associated with software estimates but
also to develop better work assignment. In the
organization studied, many projects were planned
and estimated based only on information pertain-
ing to functional aspects of the system. Currently,
there is also information about quality attributes,
which is prioritized according to its importance
for the customer and the difficulty of implementa-
tion. It should also be noted that in the context of
the organization studied, the creation of a work
assignment structure is essential in TSP to guide
development in the IMPL phase. Furthermore, this
structure also provides a clear guide to identify
which interfaces must be documented thoroughly.

6. CONCLUSION

Over the past years, attention to the introduction of
software architecture development has increased
as software architecture has been recognized
as an important artifact for high quality system
development. Although software architecture de-
velopment is supported by a variety of methods,
their adoption is complicated because many of the
methods have been defined without considering all
the software architecture development activities, a
specific organization environment or a particular
software development life-cycle.

In this chapter we have described some actions
to address the problems mentioned above and
described the benefits observed when implement-
ing them in an software development company
in Mexico City, currently rated at CMMI-DEV
level 5, which develops custom software for
government and private customers. Although
there is not enough data to evaluate quantitatively
the real benefits of these actions, there are some
preliminary positive results that have led to some
valuable lessons learnt.

In order to improve the evaluation of the ben-
efits of the actions described in this paper, we
plan to carry out a systematic analysis of defects
related to software architecture found during evalu-
ations, system tests or after the system has been
transitioned to customers. This type of analysis,
however, may not be possible in the short term as
it requires a long testing period and a significant
number of projects to be performed so that suf-
ficient data can be gathered.

ACKNOWLEDGMENT

The authors wish to thank CIMAT and the edi-
tors of this book for their kind invitation to be
part of this project. We would also like to thank
Quarksoft S.A. de C.V., the company where the
software architecture methods were introduced.

216

On Software Architecture Processes and their Use in Practice

REFERENCES

Ali Babar, M., & Gorton, I. (2004). Comparison
of scenario-based software architecture evalua-
tion methods. In Proceedings of the Asia-Pacific
Software Engineering Conference (pp. 600-607).
IEEE Computer Society.

Bachmann, F., Bass, L., Chastek, G., Donohoe,
P., & Peruzzi, F. (2000). The architecture based
design method (Technical Report CMU/SEI-2000-
TR-001). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University.

Barbacci, M., Ellison, R. J., Lattanze, A. J.,
Stafford, J. A., Weinstock, C. B., & Wood, W.
G. (2003). Quality attribute workshops (QAWs)
(Technical Report CMU/SEI-2003-TR-016).
Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University.

Bass, L., Clements, P., & Kazman, R. (2012).
Software architecture in practice (3rd ed.). Read-
ing, MA: Addison-Wesley Professional.

Bengtsson, P., Lassing, N., Bosch, J., & Vliet, H.
(2000). Analyzing software architectures for modi-
fiability (Technical Report HK-R-RES–00/11-
SE). Högskolan Karlskrona/Ronneby.

Buschmann, F., Henney, K., & Schmidt, D. (2007).
Pattern-oriented software architecture: Vol. 4.
A pattern language for distributed computing.
Chichester, UK: Wiley.

Cervantes, H., Martinez, I., Castillo, J., & Montes
de Oca, C. (2010). Introducing software archi-
tecture development methods into a TSP-based
development company. In Proceedings of SEI
Architecture Technology User Network (SATURN
2010) Conference. Pittsburgh, PA: Software En-
gineering Institute, Carnegie Mellon University.

Cervantes, H., Velasco-Elizondo, P., & Kazman,
R. (2013). A principled way of using frameworks
in architectural design. IEEE Software, 30(2),
46–53. doi:10.1109/MS.2012.175

Chrissis, M. B., Konrad, M., & Shrum, S. (2010).
CMMi for development: Guidelines for process
integration and product improvement (3rd ed.).
Reading, MA: Addison-Wesley Professional.

Clements, P. (2000). Active reviews for intermedi-
ate designs (Technical Report CMU/SEI-2000-
TN-009). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University.

Clements, P., Bachmann, F., Bass, L., Garlan, D.,
Ivers, J., Reed, L., & Nord, R. (2011). Document-
ing software architectures: Views and beyond (2nd
ed.). Reading, MA: Addison-Wesley Professional.

Clements, P., Kazman, R., & Klein, M. (2002).
Evaluating software architectures: Methods and
case studies. Reading, MA: Addison-Wesley
Professional.

Davis, N., & Mullaney, J. (2003). The team the
team software ProcessSM (TSPSM) in practice:
A summary of recent results (Technical Report,
CMU/SEI-2003-TR-014). Pittsburgh, PA: Soft-
ware Engineering Institute, Carnegie Mellon
University.

Eeles, P. (2012). Capturing architectural require-
ments. Retrieved from http://www.ibm.com/
developerworks/rational/library/4710.html

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1995). Design patterns: elements of reusable
object-oriented software. Reading, MA: Addison-
Wesley Professional Computing Series.

Hibernate Community Documentation. (2004).
Improving performance. Retrieved from http://
docs.jboss.org/hibernate/orm/3.3/reference/en/
html/performance.html

Hofmeister, C., Kruchten, P. B., Nord, R., Obbink,
H., Ran, A., & America, P. (2007). A general
model of software architecture design derived
from five industrial approaches. Journal of Sys-
tems and Software, 80(1), 106–126. doi:10.1016/j.
jss.2006.05.024

217

On Software Architecture Processes and their Use in Practice

Humphrey, W. (2000). The team software pro-
cess (TSP) (Technical Report CMU/SEI-2000-
TR-023). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University.

Humphrey, W. (2005). PSP, a self-improvement
process for software engineers. Reading, MA:
Addison-Wesley Professional.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999).
The unified software development process. Boston,
MA: Addison-Wesley.

Kazman, R., Abowd, G., Bass, L., & Clements,
P. (1996). Scenario-based analysis of software
architecture. IEEE Software, 13(6), 47–55.
doi:10.1109/52.542294

Kazman, R., Nord, R., & Klein, M. (2003). A
life-cycle view of architectural analysis and
design methods (Technical Note CMU/SEI-2003-
TN-026). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University.

Kroll, P., Kruchten, P. B., & Booch, G. (2003).
The rational unified process made easy. Reading,
MA: Addison-Wesley Professional.

Kruchten, P. B. (1995). The 4+1 view model
of architecture. IEEE Software, 6(12), 42–50.
doi:10.1109/52.469759

Lassing, N., Bengtsson, P., Vliet, H., & Bosh, J.
(2002). Experience with ALMA: Architecture-
level modifiability analysis. Journal of Systems
and Software, 61, 47–57. doi:10.1016/S0164-
1212(01)00113-3

Lattanze, A. J. (2009). Architecting software
intensive systems: A practitioners guide. Boca
Raton, FL: CRC Press.

OpenUP. (2012). Retrieved from http://epf.
eclipse.org/wikis/openup

Rozanski, N., & Woods, E. (2012). Software
systems architecture: Working with stakeholders
using viewpoints and perspectives. Reading, MA:
Addison-Wesley.

Shaw, M., & Clements, P. (2006). The golden age
of software architecture. IEEE Software, 2(23),
31–39. doi:10.1109/MS.2006.58

Software Engineering Institute. (2012). Retrieved
from http://www.sei.cmu.edu/

KEY TERMS AND DEFINITIONS

Architectural Design: The phase of the
software architecture development lifecycle that
focuses on identifying and selecting the differ-
ent structures that compose the architecture and
that will allow architectural requirements to be
satisfied.

Architectural Documentation: The phase of
the software architecture development lifecycle
that focuses on creating the documents that de-
scribe the different structures that compose the
architecture for the purpose of communicating it
efficiently to the different system stakeholders.

Architectural Evaluation: The phase of the
software architecture development lifecycle that
focuses on assessing a software architecture de-
sign to determine whether it satisfies the required
architectural requirements.

Architectural Requirements Analysis: The
phase of the software architecture development
lifecycle that focuses on eliciting, analyzing,
specifying and prioritizing architectural require-
ments so that they can later be used to drive the
design of the architecture.

Software Architecture Development Life-
cycle: It imposes a structure on the activities for
software architecture development. The software

218

On Software Architecture Processes and their Use in Practice

architecture development lifecycle is composed of
the following phases: architectural requirements
analysis, architectural design, architectural docu-
mentation, and architectural evaluation. Each one
of the phases involves principles, practices and
methods used to develop software architecture.

Software Architecture Development: It is
the set of activities that are typically performed

early in a software development project, which
contribute to creating the software architecture
of a system.

Software Architecture: It is the structure (or
structures) of this system, which comprises soft-
ware elements, the externally visible properties
of those elements, and the relationships among
them (Clements et al, 2010).

