
A Development Environment to Support Development
with Reuse

Perla Velasco Elizondo

Centre for Mathematical Research, CIMAT.
Jalisco S/N Colonia Valenciana. Guanajuato, Guanajuato, 36240, México.

pvelasco@cimat.mx

Abstract. This paper describes a development environment to support the pro-
cess of development with reuse. The objective of our environment is to automate
this process within the context of an alternative component composition approach
based on the semantics of a new component model.

1 Introduction

Component-based development (CBD) aims to develop software systems by reusing
software components rather than coding the systems entirely from scratch. There is
a general understanding of components as reusable building elements of computation
that are composed together into larger blocks. We believe that such a scenario not only
depends on the availability of the components, but also on how the components are
assembled together and what kind of composition mechanisms are utilised.

In current CBD approaches, components either are constructed from scratch or, be-
cause of the nature of the composition mechanisms utilised, components contain very
specific information to the composition they are constituents. Constructing components
from scratch goes against the approach of composing pre-existing components which is
the basis of CBD. On the other hand, components containing very specific composition
information makes them highly coupled with the components they communicate, which
hinders their reuse for the construction of different systems. Additionally, components
dealing with composition aspects makes them more complex and impacts on provid-
ing a clean separation of computation from communication-coordination, which is bad
because reuse of computation is a main issue in CBD.

To tackle these shortcomings, we have introduced an alternative composition ap-
proach based on the semantics of a new component model [6, 4]. The approach is based
on components –which encapsulate computation and connectors –which encapsulate
well-known communication and coordination patterns. An assembly of components is
built via connectors in a hierarchical bottom-up manner. An important characteristic in
our approach is that both, components and connectors are not only first-class architec-
tural elements but also reusable compilation units at implementation stage.

In preview work we have implemented components and connectors as well as gen-
erated some prototype systems from them, e.g. [5]. In [2] we have defined a catalogue of
connectors to support the process of development with reuse; the process of construct-
ing final systems by utilising pre-existing components in binary format. In this paper,
we describe a development environment to support this process.



2 The Development Environment

As shown in Fig. 1 (a), the architecture of our development environment contains five
main elements: (1) a Component Repository, (2) a Connector Repository, (3) a Visual
Assembler, (4) a Code Generator and (5) an Execution Environment. All these elements
as well as the GUI that integrates them (see Fig. 1 (b)) were developed in Java. Thus,
any computer having Java Virtual Machine (JVM) installed will be able to run our
environment as well as the generated systems.1

Component

Execution
Environment

System

Visual Assembler

Repository

Component

Code

Repository

Connector

Sequencer

Generator

(a) (b)

Fig. 1. (a) The architecture and (b) GUI of the development environment.

The environment supports development with reuse by dragging, dropping and con-
necting in a hierarchical manner pre-existing components and pre-existing connectors
from the Component and Connector repositories into the Visual Assembler. As compo-
nents (and connectors) were implemented in Java (see [4, 5]), reflection techniques are
utilised to perform structural introspection on components’ binaries and their interfaces
to retrieve the information about the services they offer.

Every time a connection between a component and connector is created, the fine-
grain specification of such a connection is carried out via a composition wizard. Ac-
cording to the semantics of the connector utilised and the information known about
the selected component, the wizard asks the system developer to provide specific data
–e.g. the methods to execute in the connected component, the required parameters, etc.
The tool performs the certain syntactic and semantic checks to ensure the proper defini-
tion of an assembly. Each assembly can be considered a subsystem and (if required) be
generated as a identifiable compilation unit. Therefore, a subsystem can be tested and
reused separately for further composition.

Once an architecture is fully defined, the Code Generator generates the source code
and the binary file of the new Java class representing the system, which is meant to be
deployed and executed on the Execution Environment, which is a JVM.

1 Our development environment works on a JRE version 1.5 or higher and requires about 7.1MB of free disk space. There
are not special memory/processor requirements above those recommended for the hosting operating system.

2



For space reasons, we do not provide examples of systems developed via our envi-
ronment. However the details of some robotics systems, which were developed by using
our environment, are presented at [1].

3 Discussion

As stated before, the aim of our environment is to automate development with reuse
within the context a new component composition approach. Thus, this work shares
many of the goals and principles of those concerned to define systems in terms of
components and their interconnections, e.g. MILs [8], coordination languages [9] and
ADLs [7]. The focus on conceptual architecture and explicit treatment of first-class con-
nectors differentiate our approach from MILs. Connectors in coordination languages are
very different in nature from ours because they do not behave like any pattern. Although
some ADLs come with a set of predefined connector types and incorporate some sup-
port for system code generation, the “intrusive” nature of connector mappings in these
ADLs (i.e. connectors are embedded in components code), results in neither first-class
nor reusable architectural elements at implementation stage.

In our environment system construction is a pure hierarchical bottom-up process
involving not only pre-existing components but also pre-existing connectors. The defi-
nition and generation of subsystems that are logically highly cohesive but low-coupled
at the same time is supported too. If required, any generated subsystem can be tested
and reused separately for further composition in the current or in a different system.
Because of the former, in contrast to other approaches our development tool maximises
both external and internal reuse [3].

Although the connectors in our catalogue offer a semantics that is perse a mecha-
nism to enforce the correct construction of systems, in the current stage of this work it
has been assumed that the composed components fully satisfy the requirements to the
system to built and that they present compatible signature naming conventions, execu-
tion models and environmental dependencies among them and the execution environ-
ment into which are going to be deployed. These assumptions have to be revised, and
ideally dropped, to fit a more realistic development context.

Finally, the process of system construction supported by our development environ-
ment differs from the processes adopted by current commercial component-based tools.
This may limit its adoption in practice. However, experiences demonstrate that the man-
ner in which components and connectors are treated in current approaches is not enough
to achieve the CBD desiderata. That makes our environment worthy of consideration.

4 Conclusions and Future Work

This paper describes a development environment to support the process of development
with reuse within the context of an alternative component composition approach based
on the semantics of a new component model. The usefulness of the development envi-
ronment has been demonstrated; the behaviour of some of the generated systems can be
observed at [1].

3



As discussed before, in its current state our environment does not provide a full
support to validate the correctness of systems architectures and the generated systems.
Thus, planned future work include to tackle this aspect within a specific application
domain so that domain specific components, connectors and analysis techniques can be
developed and integrated to our environment. For example within the control systems
domain, the period, deadline, computation time, maximum blocking time and worst-
case execution time are examples of non-functional properties for which an analysis is
compulsory. Then, components’ interfaces containing these information can be defined
so that they could make it possible to perform some checks during system construction
to ensure the participant components are free of conflict before composing them.

Additionally, it may be also interesting to enhance the capabilities of development
environment by considering tools to support other activities in the component-based de-
velopment life cycle such as component development, component search and retrieval,
(component and) system testing, etc. In this context, a more robust approach to com-
ponent interface specification should be defined. Reflection techniques could be also
utilised to inspect information in the resulting interfaces to support component search
and retrieval as well as the automatic generation of test cases.

Acknowledgments

This work was supported by CONCyTEG under grant 08-02-K662-119.

References
1. P. Velasco Elizondo. Systematic and automated development with reuse. http://www.

cimat.mx/˜pvelasco/exo/exotool_en.html.
2. P. Velasco Elizondo and K.-K. Lau. A catalogue of component connectors to support devel-

opment with reuse. Submitted to Journal of Systems and Software.
3. W. Frakes and C. Terry. Reuse level metrics. In Proceedings of the 3rd International Confer-

ence on Software Reuse: Advances in Software Reusability. IEEE, 1994.
4. K.-K. Lau, P. Velasco Elizondo, and Z. Wang. Exogenous connectors for software compo-

nents. In G.T. Heineman, I. Crnkovic, H. Schmidt, J. Stafford, C. Szyperski, and K. Wallnau,
editors, Proceedings of 8th International SIGSOFT Symposium on Component-based Soft-
ware Engineering, pages 90–106. Springer-Verlag Heidelberg, May 2005.

5. K.-K. Lau, L. Ling, P. Velasco Elizondo, and V. Ukis. Composite connectors for composing
software components. In M. Lumpe and W. Vanderperren, editors, Proceedings of the 6th
International Symposium on Software Composition, LNCS 4829, pages 266–280. Springer-
Verlag, 2007.

6. K.-K. Lau, M. Ornaghi, and Z. Wang. A software component model and its preliminary
formalisation. In F.S. de Boer et al., editor, Proceedings of the 4th International Symposium
on Formal Methods for Components and Objects, volume 4111 of Lecture Notes in Computer
Science, pages 1–21. Springer-Verlag, 2006.

7. N. Medvidovic and R.N. Taylor. A classification and comparison framework for software
architecture description languages. Software Engineering, 26(1):70–93, 2000.

8. R. Prieto-Diaz J.M. Neighbors. Module interconnection languages. Journal of Systems and
Software, 6(4):307–334, 1986.

9. G.A. Papadopoulos and F. Arbab. The Engineering of Large Systems, volume 46, pages 329–
400. Advances in Computers, Academic Press, September 1998.

4


