
 1

An Integrated Unit Test Tool for Software Components

Perla Inés Velasco Elizondo
Universidad Autónoma de Tlaxcala

Laboratorio Nacional de Informática Avanzada, A.C.
pvelasco@lania.mx

Juan Manuel Fernández Peña
Facultad de Estadística e Informática

Universidad Veracruzana
jfernandez@uv.mx

Abstract. Although component-based software
development has become a relatively accepted approach,
one of its principal limitations is the lack of formal testing
methods. JavaBeans is one alternative for constructing
component-based software that has gained widespread
acceptance. This article introduces the development of a
beans testing tool The purpose of the tool is to provide the
user with guidelines that permit the performance of
component selection and evaluation tasks through the
automatic generation and execution of test cases.

1. Introduction

At present, reuse is a common practice during
software development processes. Situations such as
market competition to generate new products and
update versions have motivated developers to seek
alternatives to generate software rapidly through the
use of methodologies that contemplate reuse as a
major activity; this has led to improvements in the
speed with which programs are built.
Developmental approaches such as object-oriented
and component-based design are significant
examples of this.

Although tools to test object-oriented software exist
and, under some circumstances, can be applied to
components, many of them rest on the source code
and, because components are usually offered as
finished products not offered with the source code,
they are difficult to use.

In the case of component-based software, which
has become a relatively widespread and
attractive approach to quick software
construction, there are imp ortant limitations
regarding the formality of the testing techniques
used. The lack of guarantees that the software
elements being reused will work correctly under
all circumstances may compromise the quality of
the products developed considerably.

Added to this, many final component users lack
the formal knowledge necessary to carry out
tests. Many times the evaluation that they
conduct consists of a manual test that is neither
systematized nor well-founded. Should a more
exhaustive test be necessary, it would be broader
and more formal but would be hard to automate;
furthermore, to carry it out a considerable
amount of time would be needed.

The purpose of this article, which considers
component-based development and software
development central themes, is to present the
development of a component testing tool that has
been coined “PACJavaBeans” (JavaBeans
Automated Component Test). JavaBeans
[SUN02] is one of the most popular models for
the construction of this type of software, and
because is an innovation in component testing
material, we decided to experiment with the
component model proposed by Sun
Microsystems, JavaBeans. The assumption was
made that previous experiences with the
construction of objected/oriented software with
Java would give the research stronger direction.

The tool is intended to permit the automatic
generation and execution of test cases, so that
with the results, the component user can obtain
guidelines that facilitate their selection and
evaluation. The type of test that the tool
performs takes place at unit level. With
functional test techniques being used.

 2

2. The Beans test: present status

JavaBeans is an API implemented for the
construction and use of components written in Java,
components that are known as “beans.” This API,
formally implemented in the Bean Development Kit
(BDK), permits components to be loaded, used,
modified, and connected together, so that new
beans, applets, or complete applications can be
built. The BDK has three main elements: the
BeanBox (developer environment), ToolBox (bean
repository), and the PropertySheet (bean
properties).

The BeanBox offers certain advantages in bean
testing. The user can charge, execute, and
interconnect components within the BeanBox. The
PropertySheet, in turn, can directly modify the
values of certain properties or visualize the effects
on them as a result of the execution of certain
methods. These activities are repeated as many
times as necessary; by monitoring the results
obtained, the user can determine if the component is
functioning as it should. The features offer are,
however, quite different from those of a tool created
specifically for software testing, as the test is purely
visual.

If BeanBox reveals that a bean is faulty, it is not
always possible to determine which is the defective
part. With a little luck, the user may be able to
identify under what circumstances the fault was
generated, but the test remains murky. Exist beans
methods cannot be directly touched by the user;
using BDK, it is difficult to test them.

Commercial tools such as JUnit [MCW02] and Jtest
[PAR02] were not conceived for components;
nevertheless, they permit testing Java classes. Thus,
they can be used with JavaBeans. It is important to
emphasize that these tools depend on the source
code and do not work directly with JAR files, the
bean presentation format.

3. Testing tool

When dealing with concepts such as testing and test
case [IEEE90] and readdressing the ideas presented
in [WOH98] and [FER99] for tool design, four
stages of the testing process were defined:

a) Selection of units to be tested,

b) Generation of test cases,
c) Execution of testing plan, and
d) Presentation of results

The tool carries out these steps with eight
modules that, with the exception of the first, all
use and generate a set of interconnected outputs.
The eight modules are reached sequentially from
the dispatcher module; see Figure 1.

L
a
n
z
a
d
o
r

Apertura de archivos
JAR

Generador de Casos
de Prueba

Ejecutor de Casos de
Prueba II

Presentador de
ResultadosI

Editor de Casos de
Prueba

Ejecutor de Casos de
Prueba I

Presentador de
Resultados II

Usuario
de la

herramienta

S1

S2

S3

S4

S5

S 6

Salida a un archivo
de texto

Información Interna

Figure 1. Architecture of testing tool

The following sections will describe with more
detail the tool’s modules.

3.1 Module for opening JAR files

Object-oriented software is generally built on a
foundation of class sets which offer and use
services between each other in order to conduct
certain operations. Apart from classes, there are
other elements necessary for application
functioning, such as image, configuration, and
help files. This situation also arises for beans

Most of the components constructed under the
JavaBeans model contain the following
elements:

a) One or more classes defined as beans
b) A file represented by an icon, and
c) One or more classes that are not defined as

beans but that are necessary in order for
the component to function.

 3

To lessen the difficulty of managing these elements
individually, beans appears as a JAR file that
packages all its elements in one unit. When this file
is loaded in the BeanBox, its content is extracted so
that it can be used in a work setting.

Similar to BeanBox, the constructed tool’s opening
module has the capacity to read JAR files under the
following conditions:

• Regarding content:

- That components be implemented according
to JavaBeans model considerations.

- That the component be valid—that is, that can
be correctly loaded and used in the BeanBox.

• Regarding function:

- That the user understand, at least in general
terms, how the component works.

The generated output on the module’s exit consists
of a text file within which are stored the names of
each bean found in the JAR; the user is presented
with this information through the module’s
interface.

3.2 Test case generator module

In accordance with [BIN95], [PER90], [FER99],
and [PRE98], object-oriented software unit test
establish the unit as the element of evaluation,
specifically an instance of a class, that is, an object;
special attention is given to its attributes and
operations. Thus, an ideal test could be one in
which all methods contained in the class are
considered.

In the context of components, and because the user
who tries them out does not usually have the source
code, a functional testing approach is taken, as this
permits the tester to experiment with given inputs
and obtained outputs. PACJavaBeans offers two
alternatives for the generation of test cases: cases
edited by the user and those generated
automatically.

For the first alternative, the tool can accept a text
file that contains those test cases of interest to the
user, who is responsible for designing and editing
them.

The second alternative, cases generated
automatically, was the fruit of more formal work. In

order to automate testing as much as possible,
programs are executed with predefined test
cases; the following testing techniques are
employed:

a) Limit values test:
Because there are component methods or
functions in which the user expects a certain
behavior relating to a given input, automatically
generated test cases were conceived under the
premise that upon providing border values, it is
possible that errors will arise. Nevertheless, quite
simple test cases were also considered.

b) State-based test:
As there are situations in which a method is
executed without problems yet the final
component state is not as expected, it was
decided to include some considerations for this
testing technique. Specifically, the initial and
final bean states are inspected in regard to
method execution.

In the tool, each test case is generated on the
basis of entries that a method can receive and
that have been identified through review of entry
arguments. These can appear as:

- defined Java types, such as an int, char,
Object, Color, etc., or

- a user-defined object

In both cases, the initial goal is to generate and
provide test cases for each class method;
however, this task may be complicated by the
presence of parameters unrecognized by
PACJavaBeans or when reference is made to
external objects. To tackle this weakness, a
mechanism has been implemented that permits
the loading of user-defined “Plug-in’s”:
basically, it consists of a file with test values for
the new argument and the inclusion of the
corresponding object builder
The test cases generated by these two modules
are stored in a text file, and the user is given the
results obtained after the process is complete.

3.3 Test case executor module

Once the bean’s test cases have been generated,
the following activity consists of feeding them to
the corresponding modules for execution, along
with capturing the outputs generated as a product

 4

of this series of executions. These are the tasks that
the two available executor modules carry out, one
executing cases generated automatically by the tool
and the other executing user edited test cases.

The results of these executions are a series of
outputs identified using the following alternatives:

a) return value method, and
b) exception mechanisms

Due to the nature of object-oriented software, it is
convenient to do a more in-depth review and more
thorough management of those outputs obtained:
sometimes a correct output does not necessarily
mean that the component state is also correct. For
this reason, a third option is added:

c) object state

Returning to the concepts introduced in [TUR93]
and [BAS99], data member representation is
inspected along with the way that methods
manipulate object representation in order to
establish a set of object states. Concretely, these
consist of a valid set of states from which an object
can accept an input and a valid set of states
generated after an output. This makes it possible to
execute test cases on the basis of initial component
state or when this state has changed as a result of
previous operations. The object state consists of
values of bean properties at a particular moment.

Thus, through user interface, both modules present
a summary that informs the user of the results of the
process that has been carried out.

3.4 Results presentation modules

The tool contains three modules that permit the user
to visualize the results generated after the testing
process is complete: two that provide the results
generated from the execution of test cases—those
generated automatically and edited by the user—
and one to show internal class information
implemented by the bean.

The first two modules (see Figure 2) provide the
following information:

a) Name of class evaluated
b) For each method contained in the class,

• Description of method arguments
• Description of return value method.
• Total number of test cases generated

c) For each test case generated,
• Detail list of test case values
• Component state before execution of test

case
• Component state after execution of test

case

 Figure 2. Module that provides test results

The third module (see Figure 3), known as
“internal information,” provides the following:

a) For each variable:

• Name
• Type

b) Number of class methods
c) For each method:

• Method name
• Description of input arguments
• Description of return value

 Figure 3. Internal information module

The information provided by this group of
modules permits the user to obtain some
guidelines for bean selection and evaluation.

 5

These guidelines may be generated under the
following circumstances:

• changes in bean state
• generated exceptions
• test case analysis, which permits identification of

a particular component behavior.
• Analysis of methods and variables, which

permits the acquisition of guidelines oriented to
software metrics.

• total number of methods tested
• total number of test cases generated
• total number of unexecuted methods

4. Results

In order to verify that PACJavaBeans was working
correctly, tests were carried out on several
components. What follows are results obtained for
the certain beans:

• The Puzzle component. Puzzle is, as its name
suggests, a bean that represents a numerical puzzle.
When it is used in combination with other
components, an application can be built that permits
the organized manipulation of the pieces that make
it up.

• The TextEditor component. TextEditor is a
component that offers the functions of a simple
word processor.

• The ProgressBar component. This component
implements a thermometer (slide bar) that permits
the graphic representation of a particular
percentage.

Table 1 shows the errors detected in this group of
components.

In the Puzzle component, the tool could detect
errors in a set of methods that corresponded to bean
properties. For the setPuzzleCols(int) and
setPuzzleRows(int) methods, which permit
specification of the number of columns and rows of
the puzzle, respectively, negative values should not
be admitted. This same condition is applicable to
methods setGap(int) and void setBelvelHeight(int),
which establish the space between and shadowing
of pieces. When negative values are administered,
the bean does not generate a single exception or

corrective action but does generate a change in
state that admits this type of values in its
properties.

Bean Method Input Expected
output

Obtained
output

setPuzzleCols(int)

void setPuzzleRows(int)

setGap(int)
Puzzle

void setBelvetHeigth(int)

-2147483648
-2147483647
-2147483646
-1073741824
-1
-2

Exception
or default
value of
property

Null and
property
equal to
value
provided

void save () Not
applicable

Exception Null

void
setFontName(java.lang.String)

aeiou
!”#$%&/()=?¡
1234567890

Exception
or default
value of
property

Null and
property
equal to
value
provided

void setFontSize(int)
TextEditor

void setFontStyle(int).

-2147483648
-2147483647
-2147483646
-1073741824
-2
-1
0
2147483645
2147483646
2147483647
1073741824

Exception
or default
value of
property

Null and
property
equal to
value
provided

-1073741824 1

-2147483646 1

2147483645 0
ProgressBar void setPercent(int).

1073741824

Exception
or default
value of
property

0

Table 1. Errors detected by PACJavaBeans

For the bean TextEditor, the void load() method,
which permits a file to be loaded, generated an
exception upon execution, as was expected. For
the void save() method, a similar outcome was
expected; this was, however, not the case, and it
executed without problems. The void
setFontName(java.lang.String) method allows
one to set the font type used in a word processor;
upon testing, it became clear that no type of
validation for this input parameter existed.
Something similar occurs in the case of methods
that manipulate the size and style of the font,
such as void setFontSize(int) and void
setFontStyle(int).

An interesting aspect of the ProgressBar
component was revealed through tes ting: it
relates to the method that modifies the
component percentage property, setPercent(int).
Analysis of results shows that upon the
introduction of values that do not comply with
the characteristic of being higher than 0 and less
than or equal to 100, the component replaces the
value of property percentage with a valid figure.
This replacement was not, however, always
consistent, being either 0 or 1.

 6

5. Conclusions and future research

The activities carried out for this study have led to
the following conclusions:

a) Regarding the testing tool:

• ?The objective of developing a tool that tests

JavaBeans components was realized. The tool is
complete and provides an alternative for
automatic testing.

• ?The automatic generation of test cases and their
execution are significant advantages for users
who lack formal knowledge of the subject.

• For implementation of the tool, relevant aspects
of the software testing area are considered.

• Although the use of functional testing techniques
could be considered a limitation, given the
nature of beans, the testing strategies used
correspond to the present context of component-
based software.

b) Regarding future applications and
improvements in the tool:

• Once the market offers more formal component

specifications, higher levels of testing could be
adopted.

• ?The potential to test servlets and even Enterprise
JavaBeans with similar techniques.

• ?Improvements could be made in the user’s test
case editor, so that typing errors are minimized.

• Likewise, a mechanism could be included that
provides the initial component state from which
the testing process is begun. This would improve
the state following bean instanciation.

The information that was gleaned from this study
confirms a point that experience has long
suggested: that although some might underestimate
its importance, testing is a crucial procedure that
cannot be overlooked.

References

[BAS99] Bashir, I. y Goel A. “Testing object-oriented
software. Life cycle solutions”. Springer-Verlag New
York , Inc.1999.
[BIN95] Binder, R. “Testing object-oriented systems: A
status report”. http:///www.rbsc.com/pages/ootstat.html.
Documento en Línea. Abril 1995.
[FER99] Fernández, J. M. “Test de component-based
software. Estado actual” .Informe Técnico N° 28 Serie
Verde, CIC, IPN. 1999.

[IEEE90] “IEEE Standard Glossary of Software
Engineering Terminology”. 1990
[PER90] Perry, D. y Kaiser, G. “Adecuate testing y
object-oriented programming”. Testing Object-
Oriented Software. IEEE Computer Society, 1998. pp
11-17.
[PRE98] Pressman, R. “Ingeniería del software. Un
enfoque práctico”. Cuarta Edición. McGraw-
Hill/Interamaericana de España. 1998.
[SUN02] SUN “Java Beans”. http:///java.sun.com .
Documentación en línea 2002.
[TUR93] Turner, C. y Robson D. “The sate-based
testing of object-oriented programs”.Testing Object-
Oriented Software. IEEE Computer Society, 1998. pp
133-142.
[WOH98] Wohlin C. y Regnell B., “Reliability
certification of software components”.Proceedings
Fifth international Conference on Software Reuse,
Canada, 1998. pp 56-65.
[MCW02]“Unit testing Java code with Junit”.
http://www.mcwestcorp.com/Junit.html . Documento
en línea 2002.
[PAR02]“Jest”.
http://www.parasoft.com/jsp/products/home.jsp?produ
ct=Jtest&/quick.html . Documento en línea 2002.

Vitae

Juan M. Fernández has an
undergraduate degree on Physics,
and a master degree on Operations
Research, both from UNAM, and a
doctaorate degree on Computer

Science from IPN. Had worked with UNAM,
Universidad Autónoma de Baja California and
Universidad Veracruzana. His present interests are
Software Engineering and Software Technologies.

Perla I. Velasco has an
undergraduate degree on
Informatics from
Universidad Veracruzana,
México. She got her
master degree in
Computer Sciences from

Universidad Autónoma de Tlaxcala, México. She is a
Associate Researcher from LANIA, A.C. in Xalapa,
Veracruz, México, and her present research and
application interests are in Software Engineering and
Data Bases.

